12 Fanno Flow (Adiabatic Flow with Friction)

This program calculates the exit properties of a compressible gas flowing adiabatically (no heat transfer) in a constant diameter, round duct with friction.

By trial and error the following Fanno equation is solved:

$$f\frac{L}{D} = \frac{1}{k} \left(\frac{1}{M_1^2} - \frac{1}{M_2^2} \right) + \frac{k+1}{2k} \ln \left[\left(\frac{M_1}{M_2} \right)^2 \frac{(k-1)M_2^2 + 2}{(k-1)M_1^2 + 2} \right]$$

Caution: as indicated in the above graph, the Fanno equation can have two solutions: a subsonic solution and a supersonic solution.

Although both solutions are valid, for the purposes of this program, we are concerned only with the subsonic region.

- Therefore, to avoid finding the incorrect solution to the Fanno equation, the initial Mach No. (M1) must always be < 1.0, and the exit Mach No. (M2) must always be <= 1.0. The program warns when either of the above criteria is violated.
- To find the properties at the limiting sonic velocity condition, the program sets M2=1.0 and calculates the maximum flow, and the maximum length.

For the initial position (1) and/or final position (2) the following values are calculated:

$$\sigma = \frac{P144(MW/1544)}{ZT}$$
 $V = \frac{0.0509W}{\sigma d^2}$ $V_S = \sqrt{kgT(1544/MW)}$

$$M = V/V_S$$
 $f = (0.25)/\left[\log_{10}\left(\frac{\varepsilon}{3.7D}\right)\right]^2$

Notes:

- The friction factor, f , is calculated in the fully turbulent region (i.e. independent of Reynolds no.). To change f , change the pipe roughnes, $\mathcal E$.
- To change the calculated density, change the compressibility factor, Z.

The exit pressure and temperature are found from the following relationships:

$$\frac{T_1}{T_2} = \frac{1 + \frac{(k-1)M_2^2}{2}}{1 + \frac{(k-1)M_1^2}{2}} \qquad \frac{P_1}{P_2} = \frac{M_2}{M_1} \sqrt{\frac{T_1}{T_2}}$$

The stagnation values can also be found:

$$\frac{T_0}{T_1} = 1 + \frac{M_1^2(k-1)}{2} \qquad \frac{P_0}{P_1} = \left(\frac{T_0}{T_1}\right)^{k/(k-1)}$$

The compressible and incompressible pressure drops can be compared:

$$\Delta P_{comp} = P_1 - P_2 \qquad \Delta P_{inc} = 3.36 \times 10^{-6} \left(\frac{fLW^2}{\sigma_1 d^5} \right)$$

Symbols

9 0 1 2	Variable Stagnation Position Initial Position Exit Position	<u>Units</u>
С	constant	dimensionless
d	pipe diameter	in
D	pipe diameter	ft
f	friction factor	dimensionless
g	gravitational constant	ft/sec/sec
k	ratio of specific heats Cp/Cv	dimensionless
L	pipe length	feet
M	Mach No	dimensionless
MW	molecular weight	lb/lb mole
Р	pressure	psia
t	temperature	F
Т	temperature	R
V	velocity	fps
Vs	sonic velocity	fps
W	mass flow	lb/hr
Z	compressibility factor	dimensionless
ΔΡ	pressure drop	psi
٤	pipe roughness	feet
λ	specific Volume	cf/lb
σ	density	lb/cf

Reference:

McGraw Hill, Inc: <u>FLUID MECHANICS</u>, 8th ed, Victor L. Streeter &. Benjamin Wylie,

section 7.6

CRANE: FLOW OF FLUIDS, Technical Paper No. 410